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Cold-wire measurements of a scalar, temperature, its fluctuations and the axial and
radial components of the scalar dissipation between two opposed turbulent jet flows,
where one jet was slightly heated, show that the residence times of the scalar in the
mixing layer were short, that the scalar fluctuations and their dissipation were strongly
correlated and that the probability distributions of the conditional scalar dissipation
components were log-normal at values of the dissipation larger than the mean. The
first finding is consistent with the fact that the scalar turbulence was ‘young’, in the
sense that residence times were shorter than the large-eddy turn-over time, so that
the results are likely to be representative of scalar turbulence when scalar mixing
first takes place between two streams, for example close to the stabilization region
of turbulent diffusion flames. The second implies that the mean scalar dissipation,
conditional on the stoichiometric mixture fraction, is larger than the unconditional
mean by up to an order of magnitude. Dependence of the distributions of the
mean and r.m.s. conditional scalar dissipation on the shape of the scalar p.d.f. was
demonstrated by relating the largest conditional dissipation values to the rarest scalar
fluctuations and it was found that this dependence was also valid in other flows
where scalar dissipation has been measured. The third finding implies that the use of
a log-normal distribution to describe the p.d.f. of the conditional scalar dissipation,
in the context of flame extinction modelling, will be in error by only 15% provided
that the mean and the r.m.s. conditional scalar dissipation are accurately known.

1. Introduction
The measurements presented here are relevant to the representation of passive scalar

mixing when it first takes place between two streams and comprise distributions of
temperature, its fluctuations and their dissipation in the mixing layer between two
opposed jet flows with one at a slightly higher temperature. The statistical properties
of a passive scalar, its fluctuations and their dissipation at early stages of mixing
between two streams are interesting from a fundamental point of view. Our study has
been motivated by the particular example of combustion in turbulent diffusion flames
where the joint probability distribution of the fuel mixture fraction and the scalar
dissipation and the mean scalar dissipation conditional on the stoichiometric mixture
fraction are proportional to the mean reaction rate (Bilger 1980). Furthermore, local
extinction of diffusion flames is postulated to occur where the conditional scalar
dissipation exceeds a critical quenching value (Peters 1983; Bilger 1988), and global
extinction is considered to take place when the cumulative probability of the values
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of the conditional dissipation, larger than the quenching value, exceeds a critical
threshold (Liew, Bray & Moss 1984; Lee & Pope 1995).

In the context of combustion and extinction calculations, based on time-averaged
equations of the unconditional scalar dissipation, the probability distribution of
the conditional scalar dissipation and its mean value must be known or modelled. A
convenient practice (Janicka & Peters 1982; Liew et al. 1984; Haworth, Drake & Blint
1988), is to consider that the mean conditional scalar dissipation is equal to the mean
unconditional value, by assuming that the mixture fraction and the dissipation of its
fluctuations are statistically independent, that is their joint p.d.f. is equal to the product
of the two individual p.d.f.s, and to assume that the probability density function of
the conditional scalar dissipation is log-normally distributed. The merits of these two
representations, suggested by Bilger (1980) and Kolmogorov (1962) respectively, must
be decided by recourse to experiment but available measurements of the scalar field
of diffusion flames and, in particular, of the mixture fraction dissipation, its statistics
and joint statistics are limited because of the requirements for advanced optical
techniques, so the validity of the modelling approximations has not been thoroughly
assessed. The measurements that do exist tend to suggest that the assumption of
statistical independence between mixture fraction and scalar dissipation is not valid
near the air–flame boundary and that the probability distribution of the unconditional
dissipation deviates from log-normality, possibly because of intermittency (St̊arner
et al. 1994; Everest et al. 1995).

Structural information about the scalar field and its dissipation can also be acquired
by measuring a passive scalar in non-combusting flows. This approach has the advan-
tage that measurements can be performed using the cold-wire method which is better
documented than optical techniques. Even though there are several publications that
report measurements of a scalar and its dissipation, the assumption of independence
was examined only in few cases. These include the studies of Anselmet & Antonia
(1985), Jayesh & Warhaft (1992), Kailasnath, Sreenivasan & Saylor (1993) and Ansel-
met, Djeridi & Fulachier (1994) in round and square jets, wakes and boundary layers
who found that a correlation between the passive scalar and the dissipation existed
when the scalar fluctuations were large. The statistical distributions of the uncon-
ditional and conditional scalar dissipation were examined by Sreenivasan, Antonia
& Dahn (1977) and Namazian, Scheffer & Kelly (1988) in a boundary layer and a
round jet respectively who concluded, as did Everest et al. (1995) in a combusting
flow, that the individual components of the unconditional scalar dissipation deviated
from log-normality due to intermittency effects but argued that the overall dissipation
distribution can be adequately described as log-normal. However, the majority of the
existing publications (Tavoularis & Corrsin 1980; Antonia & Browne 1986; Krish-
namoorthy & Antonia 1987; Antonia & Mi 1993), focus on the mean values of the
scalar dissipation and on the anisotropy between the components rather than on the
statistical distributions. Nevertheless, there seems to be no theoretical connection be-
tween the departures from local isotropy and flame extinction although Mi, Antonia
& Anselmet (1995) have argued that when the statistical independence between
mixture fraction and scalar dissipation is not justified, the temperature fluctuations
are strongly asymmetrical and local isotropy does not exist.

Our aim is to extend knowledge to configurations relevant to the first stages of
turbulent mixing between two streams. In this context, the primary purpose of the
present work is to provide new evidence on the statistical relationship between the
scalar fluctuations and their dissipation and on the probability distributions of the
conditional dissipation in a flow representative of the stabilization region of diffusion
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flames and thus to quantify the implications in the modelling of turbulent diffusion
flame extinction. The scalar field within the mixing layer created by opposed jet
flows has been selected because it offers the advantage of short residence times,
in comparison to the eddy turn-over time, simulating the conditions present in the
stabilization region of practical flames and has the merits of the simplicity of the flow
field and the uniformity of the strain rate (Bray, Champion & Libby 1994).

The measurements presented in this paper include the single and joint probability
distributions of the scalar fluctuations and the axial and radial components of their
dissipation along the centreline between two opposing jets. The results are reported
in terms of a normalized temperature which has the properties of a mixture fraction.
The assumption of log-normality is assessed for the unconditional and the conditional
scalar dissipation and the origin and magnitude of the correlation between the scalar
and its dissipation is quantified. The values of the mean and r.m.s. conditional scalar
dissipation were evaluated as a function of this mixture fraction so as to provide a
complete mapping of the conditional dissipation statistics. We identify a dependence
between the distributions of the mean and r.m.s. conditional scalar dissipation and
the shape of the scalar p.d.f. and which is found to be valid in other flows where
scalar dissipation has been measured.

2. Experimental arrangement and instrumentation
The flow configuration is shown in figure 1 and is similar to that considered by

Mastorakos, Taylor & Whitelaw (1993). It comprised two identical vertically-opposed
contoured nozzles with a contraction area ratio of 9 over a 90 mm contraction length
followed by a 50 mm straight section of 30 mm diameter. The nozzles were separated
by a distance, H , equal to one nozzle diameter and perforated plates with solidity
of 45% and 4 mm hole diameter were located immediately upstream of the straight
section of each nozzle. The passive scalar was introduced by heating the upper stream
to 25◦C above ambient, with a tolerance of ±1◦C, using an electric heater (Hotwatt
9128, 4.8 kW). The flow to the upper nozzle was thermally insulated and both jets
were shielded from ambient disturbances by surrounding annular air flows.

In order to quantify the effect of the Reynolds number on the evolution of
the conditional scalar dissipation, measurements were obtained with two velocities
different by 40%. In one case, the bulk velocity, Ub, of the cold jet was 3.84 m s−1 and
that of the heated jet was 4 m s−1 so that the momenta of the two jets were equal and
the stagnation plane was located at the half distance, H/2, between the two opposing
jets. The Reynolds number based on the nozzle diameter at the exit plane was of
the order of 7500, the bulk strain rate, Sb = 2Ub/H , was 260 s−1 and the residence
time in the mixing layer, tRES = 1/Sb, was about 3.8 ms. For the other case, the
velocities of the cold and the heated jets were 5.44 m s−1 and 5.7 m s−1 respectively,
the corresponding Reynolds number was 10 480 and the bulk strain rate achieved the
value of 376 s−1 so that the residence time in the mixing layer was about 2.6 ms.

The radial profiles of the mean and r.m.s. of the axial velocity component at
the exit plane of the two jets, measured with a tungsten hot-wire probe (DANTEC
55P11) connected to a bridge (DISA 55M10) operating at an overheat ratio of 1.8,
are presented in figure 2. It can be seen that the mean velocity profiles were flat
for more than 45% of the nozzle radius, R, and that the normalized r.m.s. of the
axial turbulent fluctuations, u′/Ub, was 0.1 and independent of bulk velocity. The
integral length scale, Lt, at the jet exit planes was considered equal to 70% of the
hole diameter of the perforated plate, as has been measured by Cho et al. (1988) and
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Figure 1. The counterflow arrangement.

Kostiuk (1991). The turbulent Reynolds numbers, Rt, based on the integral length
scale and the axial velocity fluctuations were 73 and 102, the large-eddy turn-over
time, tov = Lt/u

′, achieved the values of 7.2 ms and 5.1 ms and the Kolmogorov
microscale was estimated to be of the order of 0.13 mm and 0.1 mm for the lower
and the 40% higher velocities respectively. Note that the turbulent Reynolds numbers
were evaluated at the exit planes of the opposed jets and would increase towards
stagnation by a factor of about two, as shown experimentally by Kostiuk, Bray
& Cheng (1989) and Mastorakos, Taylor & Whitelaw (1992) and theoretically by
Champion & Libby (1990) and Bray, Champion & Libby (1991).

Parallel cold wires (AUSPEX, Pennsylvania, USA, Dantec Compatible, A55P71)
and a custom-built constant-current circuit were used to measure temperature char-
acteristics including the instantaneous temperature, T , presented below in terms of
a mixture fraction Θ = (T − Tc)/(Th − Tc), where Tc and Th are the temperatures
of the cold and hot jets at their exit planes respectively, the normalized temperature
fluctuations, θ, from the mean scalar value and the axial and radial components of
their dissipation, χz = 2Dt(∂θ/∂xz)

2 and χr = 2Dt(∂θ/∂xr)
2 where Dt is the air thermal

diffusivity assumed constant and equal to 2.2 10−5 m2 s−1 , and z and r are the axial
and radial coordinates shown in figure 1. Simultaneous measurements of tempera-
ture fluctuations and the axial and radial components of the scalar dissipation were
obtained with pairs of parallel, fully etched, platinum wires with prongs tapered to a
tip diameter of 75 µm and sensors 0.5 µm in diameter and 0.6 mm long for the axial



Conditional scalar dissipation statistics 5

1.0

0.5

0
–1.0 –0.5 0 0.5 1.0

v/R

U
Ub

u«
Ub

Figure 2. Mean axial velocities and r.m.s. axial fluctuations, normalized with the bulk velocity, at
the exit of the lower and the upper jets: ©, mean velocity of the lower jet; ⊕, r.m.s. velocity of the
lower jet; 4, mean velocity of the upper jet; 5, r.m.s. velocity of the lower jet.

component and 0.4 mm for the radial, resulting in a maximum length to diameter
ratio, lw/dw , of 1200, and in a wire length to Kolmogorov length scale ratio, lw/nk ,
of 4.6. The uncertainty in the measurements, due to end conduction effects and the
influence of the thermal boundary layer created on the prongs, was estimated to be
of the order of 15% (Parathoen, Petit & Lecordier 1982; Tsuji, Nagano & Tagawa
1993), while the spatial attenuation was of the order of 20% (Wyngaard 1971a). The
separation between the two parallel sensors was fixed at 0.3 mm and was selected
(Sardi 1997), after measuring the axial squared gradient of the temperature fluctua-
tions at each point along the centreline by parallel probes of spacing in the range
of 0.2–0.4 mm according to the procedure proposed by Anselmet et al. (1994). The
time constant of the sensors in the vicinity of the stagnation plane, evaluated from
the relation proposed by Collis & Williams (1959), was 20 µs resulting in a cut-off
frequency of 8 kHz and thus approximately a factor of two higher than the estimated
Kolmogorov frequency of 4.7 kHz and so no compensation was required.

The constant-current circuit comprised two, nominally identical, electronic circuits,
one for each sensor of the twin probe. In each circuit, a constant-voltage power
supply drove a constant-current chip providing 0.1 mA constant to ±0.5 µA, so that
the velocity sensitivity of the sensors was of the order of 1% (Wyngaard 1971b).
The signal was amplified and offset to increase the resolution and was interfaced to
a Personal Computer (INTEL 486, 33 MHz ) by a 16-bit A/D card (ANALOGIC
HSDAS). The sampling rate was 8 kHz and 216 samples were obtained at each point
along the centreline so as to ensure statistical convergence for the unconditional and
the conditional values of the scalar dissipation.

3. Results and discussion
This section presents measurements of the single and joint scalar–scalar dissipation

statistical distributions along the centreline of the counterflow, and the sequence
of presentation begins with the single-point probability distributions in §3.1 before
progressing to the arguably more important joint distributions in §3.2. Since the main
objective of this work is to provide information on the joint probability distributions of
the scalar and its dissipation and on the conditional statistics of the scalar dissipation
within the mixing layer, the averaged values of the mean and r.m.s. distributions of
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Figure 3. (a) Mean and (b) r.m.s. scalar distributions along the centreline as a function of
Reynolds number: filled symbols Re = 7500; open symbols Re = 10480.

the scalar and of the unconditional dissipation are outlined only briefly in the next
paragraph and the reader is referred to Sardi, Taylor & Whitelaw (1996) for a more
detailed discussion of these quantities.

The measurements revealed that the mean normalized temperature, 〈Θ〉, along the
centreline between the two jets can be approximated by an error function, with zero
and unity at the cold and hot boundaries and 0.5 at the stagnation plane where
the r.m.s. of the scalar fluctuations, θ′, achieved its maximum value, as shown in
figure 3 in which the axial distance along the centreline has been normalized as
z∗ = (z − zstg)/(H/2) and zstg = H/2 is the location of the stagnation plane. It
is clear that the distributions of the mean scalar and its fluctuations, and hence
the mean thickness of the mixing layer between the hot and the cold streams,
were independent of bulk velocity for the two Reynolds numbers examined, as has
been also shown by Mastorakos et al. (1993). The axial and radial mean and r.m.s.
scalar dissipation components, normalized by half the bulk strain rate Sb/2 = Uc/H ,
also achieved their maximum values at the stagnation plane and decreased towards
the exits of the opposed jets, as shown in figure 4. The normalized distributions
are similar for the two bulk velocities, implying a proportional increase of the scalar
dissipation with Reynolds number in agreement with the direct numerical simulations
of Ashurst et al. (1987). The ratios of the mean and r.m.s. of the axial to the radial
components, 〈χz〉/〈χr〉 and χ′z/χ

′
r , were approximately equal to 4 at the stagnation

point, for both Reynolds numbers, implying that local isotropy was not satisfied in
the mixing layer created by two opposed jets as has been also found in wind tunnel
turbulence (Sreenivasan & Tavoularis 1980; Tavoularis & Corrsin 1981), plane jets
(Antonia & Van Atta 1975; Antonia & Sreenivasan 1977; Anselmet & Antonia 1985),
wakes (Antonia & Browne 1986; Prasad & Sreenivasan 1990) and boundary layers
(Sreenivasan et al. 1977; Kailasnath et al. 1993) for turbulent Reynolds numbers
based on the Taylor microscale as high as 240.

3.1. Probability distributions of scalar fluctuations and scalar dissipation

This section presents the scalar p.d.f.s along the centreline together with the associated
distributions of the axial and radial components of the scalar dissipation: the former
is to demonstrate that this scalar field is characterized by an unusually broad range
of probability distributions and to identify the boundaries of the mixing layer, and
the latter is to assess the applicability of the assumption of log-normality.
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Figure 4. Mean (a) and (b) r.m.s. distributions of the axial and radial components of the scalar
dissipation along the centreline as a function of Reynolds number; filled symbols Re = 7500; open
symbols Re = 10480; circles, axial component; triangles, radial component.

z? 〈Θ〉 θ′

−0.6 0.000 45 0.000 43
−0.46 0.000 6 0.006
−0.26 0.019 0.095
−0.13 0.184 0.28

0.0 0.54 0.37

Table 1. Values of normalizing variables of figures 5, 11, 12 and 13.

The p.d.f.s of the scalar fluctuations normalized by their respective r.m.s values,
see table 1, are shown in figure 5 at selected locations along the centreline for a bulk
velocity of the cold jet of 3.84 ms−1, and in figure 6 the skewness, K3 = 〈θ3〉/〈θ2〉3/2,
of the scalar fluctuations along the centreline is presented for both bulk velocities to
show that the evolution of the scalar p.d.f.s is similar for the two Reynolds numbers
over most of the mixing layer. At the edges of the mixing layer† z∗ = −0.26, mixing
takes place due to the rare events of hot high-amplitude fluctuations which cross
the mean stagnation plane and cause skewness of the p.d.f. of scalar fluctuations
of up to 20, figure 6. Near the stagnation plane, on the colder side of the mixing
layer, z∗ = −0.13, the probability of fluctuations from the hotter side increases and
the skewness is reduced by a factor of two while the probability distribution is
symmetrical (K3 = 0) and bimodal at the stagnation plane, suggesting that sharp
transitions of equal probability take place between the cold and the hot fluid. The
spatial evolution of the p.d.f.s is symmetrical with respect to the stagnation plane
and, thus, at positive values of z∗ the scalar evolves with the values of the highest
probability being those corresponding to the hotter fluid.

The bimodality of the scalar probability distribution at the stagnation plane is
consistent with the fact that the residence time in the mixing layer was too short for

† The p.d.f.s in figure 5(a) and 5(j), at z? = −0.6 and 0.6, correspond to almost unmixed
fluid with low r.m.s. scalar fluctuation, θ′, of 0.0044 (table 1); thus the quasi-Gaussian distri-
bution plotted is, primarily, due to electronic noise, amplified by the normalization procedure.
At z? = −0.46, figure 5(b), the mean scalar concentration has increased and the p.d.f. changes to a
narrower Gaussian distribution with a noticeable lack of tails.
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Figure 5. Probability distributions of the scalar fluctuations along the centreline between the two
jets (Re = 7500).
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Figure 6. Skewness of the scalar fluctuations along the centreline: filled symbols Re = 7500;
open symbols Re = 10 480.
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〈χz〉 (s−1) χ′z (s−1)

z? Re = 7500 Re = 10 480 Re = 7500 Re = 10 480

−0.6 0.02 0.02 0.03 0.03
−0.46 0.13 0.20 0.29 0.47
−0.26 0.18 0.39 6.27 6.54
−0.13 2.24 4.00 13.06 16.17

0.0 4.90 7.70 12.61 19.80

Table 2. Values of normalizing variables of figures 7, 9 and 11–15.

〈χr〉 (s−1) χ′r (s−1)

z? Re = 7500 Re=10 480 Re=7500 Re=10 480

−0.6 0.02 0.04 0.03 0.03
−0.46 0.05 0.11 0.06 0.11
−0.26 0.22 0.24 0.83 1.18
−0.13 0.80 1.26 2.71 3.34

0.0 1.36 1.82 3.68 5.30

Table 3. Values of normalizing variables of figure 8.

the growth of large-scale wrinkles at the scalar interface and thus the instantaneous
temperature profile in the axial direction increased monotonically from zero to unity.
Bimodality of the scalar p.d.f. has also been encountered behind a line scalar source
decaying into wind-tunnel turbulence, (Stapountzis et al. 1986), and in direct numeri-
cal simulations (Eswaran & Pope 1988), and is evidence that the turbulent scalar field
was ‘young’ in the sense that the residence time of the scalar within the interface was
shorter than that required for one eddy turn-over.

The probability distributions of the axial and radial components of the uncondi-
tional scalar dissipation for the two bulk velocities are multiplied by the local mean
values, 〈χz〉 and 〈χr〉, (see tables 2 and 3) and plotted in semi-logarithmic coordinates
in figures 7 and 8, for the cold half of the centreline only; the hot half was the
same within experimental accuracy. It can be seen that the region of highest prob-
ability corresponds to values of the normalized dissipation lower than unity while
long exponential-like tails of low probability extend to dissipation values as high as
15 times the mean. The p.d.f.s of the axial and the radial components of the scalar
dissipation are similar and evolve with the same trend for the two Reynolds numbers
with small differences due to the 0.5 mm uncertainty in the repeatability of position
of the traversing mechanism.

The cumulative distribution, c.d.f., of the total unconditional scalar dissipation is

c.d.f. (χ) =

∫ χ

0

P (χ∗)dχ∗ (3.1)

where χ∗ is a dummy variable and represents, in the context of flame extinction
calculations, the probability that a flame burns (Liew et al. 1984). In order to assess
whether the distribution is indeed log-normal, the cumulative distributions of the
natural logarithms of the unconditional, χz , and the conditional axial component of
the scalar dissipation, χz|Θst, where Θst is an arbitrary value of the instantaneous
scalar, are plotted in figure 9 in probability coordinates for a Reynolds number of
10 480; the cumulative distributions of the radial components are bound to be similar
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Figure 7. Probability distributions of the axial component of the scalar dissipation, plotted for
semi-logarithmic axes, at five stations along the ‘cold’ half of the centreline.
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Figure 9. Cumulative probability distributions of the unconditional and conditional scalar dissi-
pation at three locations along the centreline: (a) z? = −0.27 (b), z? = −0.13 and (c) z? = 0. The
deviation indices from log-normality are shown as inserted graphs at the left-hand side of all plots:
+++, unconditional; -◦-, conditional at Θst = 0.055; -•-, conditional at Θst = 0.3; , uncondi-
tional log-normal; − − − log-normal conditional at Θst = 0.055; -·-·-·, log-normal conditional at
Θst = 0.3.

since their p.d.f.s evolved with the same trends as those of the axial components of
figure 7 as shown in figure 8. The conditional values have been chosen to correspond
to instantaneous scalar concentrations, Θst, of 0.055 and 0.3 which represent the
stoichiometric mixture fractions of methane and CO/H2 flames in air with a CO/H2

molar ratio equal to 0.6. The respective cumulative probabilities based on an assumed
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log-normal distribution are also shown and were evaluated by integrating the following
expressions:

P (ln(χz)) =
1

σz(2π)1/2
exp

[
− (ln(χz)− µz)2

2σ2
z

]
, (3.2)

P (ln(χz|Θst)) =
1

σzst(2π)1/2
exp

[
− (ln(χz|Θst)− µzst)2

2σ2
zst

]
. (3.3)

Here the pairs of constants µz and σz and µzst and σzst are the mean and r.m.s. of
the natural logarithm of the measured samples of the unconditional and conditional
axial component of the scalar dissipation respectively, calculated from

µz =
1

N

N∑
i=1

ln(χz)i, σ2
z =

(
1

N

N∑
i=1

ln(χz)i

)2

− µ2
z , (3.4)

µzst =
1

Nst

Nst∑
i=1

ln(χzst)i, σ2
zst

=

(
1

Nst

Nst∑
i=1

ln(χzst)i

)2

− µ2
zst
, (3.5)

where subscript i represents an individual measurement, N is the total number of
samples and Nst is the number of the measured dissipation samples which correspond
to values of the scalar equal to the stoichiometric value, Θst, within a bin width of
±5% of Θst. At the high dissipation values, the selection of a single component to
assess the assumption of log-normality for the probability distribution of the total
dissipation can be justified from the previous work of Sreenivasan et al. (1977) and
Prasad & Sreenivasan (1990) who showed, by measuring simultaneously all three
components in jets, boundary layers and wakes, that the statistical distribution of
an individual component can provide a surrogate for the total scalar dissipation
p.d.f. At the low values of the scalar dissipation, the measurements of Sreenivasan
et al. (1977) revealed that departures from log-normality, due to intermittency, are
amplified if the individual components, rather than the total unconditional scalar
dissipation, are plotted. In this context, differences between the c.d.f. of the axial
component and the log-normal distribution, equations (3.2)–(3.5), identified in the
remainder of this section, are presented to provide an estimate of the maximum
possible deviation of the total unconditional or conditional distributions from log-
normality.

If a random variable is log-normally distributed then by definition the cumulative
probability of its natural logarithm is linear when plotted in probability coordi-
nates (Kerstein & Ashurst 1984). From figure 9 it can be seen that departures from
log-normality exist both for the unconditional and the conditional c.d.f.s and that
conditional c.d.f.s tend to deviate more from log-normality than the respective uncon-
ditional distributions. The deviation has been quantified by the values of the deviation
indices, I , defined by Namazian et al. (1988),

I(χz) =
c.d.f. (ln(χz))∫ ln(χz )

−∞

1

(2π)1/2
e−$

2

d$

, (3.6a)

I(χz|Θst) =
c.d.f. (ln(χz|Θst))∫ ln(χz |Θst)

−∞

1

(2π)1/2
e−$

2
std$st

, (3.6b)
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and plotted in the inserted graphs of figure 9. The indices collapse to unity for
log-normally distributed dependent variables. In equations (3.6), $ and $st are the
standardized variables of a normal distribution,

$ =
ln(χz)− µz

σz
and $st =

ln(χstz )− µstz
σstz

, (3.7)

depending on whether the unconditional or the conditional scalar dissipation distri-
butions are examined.

It can be seen that, for values of $ lower than approximately unity, the deviation
indices are of the order of 10 for the c.d.f. of the unconditional dissipation but achieve
values as high as 80 for the conditional distributions. However it should be noted that
for values of $ greater than unity the deviation index tends to one, suggesting that the
low-probability, exponential tails of both unconditional and conditional distributions
are, to a good approximation, log-normal. This is important because the critical value
of the cumulative probability below which burning cannot be sustained, estimated
from percolation theory, is of the order of 68–75% (Peters 1984), and it can be seen
from figure 9 that this always corresponds to values of $ greater than unity. Hence,
the adoption of log-normality – even for the distribution of one component of the
conditional scalar dissipation in a ‘young’ turbulent flow such as the mixing layer
created between the opposed jets – is likely to lead to prediction of extinction limits
to within 15%.

Note, however, in figure 9 that the unconditional and conditional cumulative
distributions do not coincide but, on the contrary, are greatly displaced from each
other. This implies, as shown and quantified in the next section, that an error in
the estimation of the quenching probability occurs if the values of the mean, µ, and
r.m.s., σ, of the natural logarithm of the unconditional scalar dissipation are used as
input parameters in the evaluation of the log-normal c.d.f., instead of the respective
conditional values, µst and σst.

3.2. Statistical dependence of scalar dissipation on scalar fluctuations

This section quantifies the departures from statistical independence both by evaluating
the correlation coefficient, ρθ,χ, of the scalar fluctuations and their dissipation and by
comparing the joint probability distribution P (θ, χ) with the product of the individual
p.d.f.s P (θ)P (χ). The former approach provides a rapid overview which confirms
that it is not sensible to use the unconditional dissipation instead of the conditional
value, while the latter includes complete information on the joint scalar statistics
which is useful for evaluations of models for the joint p.d.f. From the point of view of
identifying the origin of the correlation between the scalar and its dissipation, however,
the complex joint distributions are not helpful and thus the analysis proceeds through
the presentation of weighted joint p.d.f.s which reveal that successful models of joint
and conditional statistics must be able to predict the value of the scalar fluctuations
at which the large values of dissipation occur. It is reasonable to expect that this is
a formidable modelling challenge and, thus, it is relevant to inquire as to the likely
magnitude of the error involved if statistical independence is assumed, and this is
addressed and quantified in §3.3. It will be argued that the current findings concerning
the conditional values of the scalar dissipation depend on, and are determined by, the
probability distribution of the scalar p.d.f. and, although obtained for a counterflow
geometry, the conclusions are applicable to the stabilization region of many practical
combustors.



14 K. Sardi, A. M. K. P. Taylor and J. H. Whitelaw

1.0

0.5

0

–0.5

–1.0
–1.0 –0.5 0 0.5 1.0

z* = (z–zstg)/(H/2)

qh,vj

Figure 10. Distribution of the correlation coefficient between the scalar fluctuations and the scalar
dissipation, along the centreline;©, ρθ,χz , Re = 7500; ⊕, ρθ,χz , Re = 10 480; 4, ρθ,χr , Re = 7500; 5,
ρθ,χr , Re = 10 480.

Figure 10 shows the correlation coefficient between the scalar fluctuations and the
axial and radial components of the scalar dissipation

ρθ,χj =

〈(
Θ2 − 〈Θ2〉

) (
χj − 〈χj〉

)〉〈(
Θ2 − 〈Θ2〉

)2
〉1/2 〈(

χi − 〈χi〉
)2
〉1/2

(3.8)

for the two Reynolds numbers. For non-zero values of the correlation coefficient,
the scalar fluctuations and the scalar dissipation are statistically related but if the
correlation coefficient is equal to zero they are not necessarily statistically independent
(Tennekes & Lumley 1972), and further investigation by comparing the joint p.d.f. to
the product of the individual p.d.f.s is required in order to assess the dependence of
the scalar dissipation on the scalar fluctuations. It can be seen that the correlation
coefficient is almost zero outside the mixing layer, achieves a maximum value of unity
at the edges of the interface both for the axial and for the radial components – which
implies that the scalar fluctuations and their dissipation are perfectly correlated – and
decreases to approximately −0.5 at the stagnation plane independent of Reynolds
number. Gao (1991) showed that in a homogeneous scalar field the scalar fluctuation
and the scalar dissipation are statistically independent if and only if the scalar
p.d.f. has a Gaussian distribution. This finding is also applicable to the current
non-homogeneous scalar field established by the mixing layer between the opposed
jets. It can be seen, figure 10, that the correlation coefficient is not zero and the
scalar p.d.f. is not Gaussian within the mixing layer, figure 5. Anselmet et al. (1994)
and Mi et al. (1995) related the dependence of the scalar dissipation on the scalar
fluctuations to the asymmetry of the scalar p.d.f. by observing that the two variables
are independent when the skewness of the scalar fluctuations is zero, which is clearly
the case when the scalar p.d.f. is Gaussian. However this cannot be so when the scalar
fluctuations are symmetrical and their probability distribution is not Gaussian, as
demonstrated by the bimodal p.d.f. of zero skewness at the stagnation plane of the
counterflow, figure 6, which results in a value of −0.5 for the correlation coefficient.

If the assumption of independence between Θ and χj were valid then, by definition,
the joint probability distribution of the scalar fluctuations and their dissipation,
P (θ, χj), would be equal to the product of the individual p.d.f.s, P (θ)P (χj). Since it
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was shown in figure 10 that the distributions of the correlation coefficient along the
centreline between the opposed jets are similar for the axial and the radial components
only the joint p.d.f.s P (θ, χz) and P (θ)P (χz) are shown in figure 11. The joint p.d.f.s
are presented at five stations along the cold half of the centreline for a Reynolds
number of 10 480, in terms of the centred normalized scalar fluctuations, θ+, and
scalar dissipation, χ+

z .

θ+ =
Θ − 〈Θ〉

θ′
and χ+

z =
χz − 〈χz〉
〈χz〉

(3.9)

and were evaluated over a mesh of 100× 100 bins in the range [−5, 5] and [−2, 16]
of centred scalar fluctuations and scalar dissipation and all normalizing quantities are
summarized in tables 1 and 2.

At z? = −0.6, figure 11(a), outside the main part of the mixing layer, the correlation
coefficient is zero and the joint p.d.f., P (θ, χz), is similar to the product of the individual
distributions, P (θ)P (χj), so that the scalar and its dissipation are uncorrelated and
statistically independent since the corresponding scalar p.d.f. is Gaussian, figure 3(a).
Within the mixing layer, −0.6 < z? < 0.6, figure 11(b–e), the products of the individual
p.d.f.s tend to underpredict the probability of occurrence of the higher values of the
dissipation. Close to the stagnation plane, at z? = −0.13, the joint p.d.f. displays
the bimodal features of the flow field but the result of the assumption of statistical
independence does not. At the stagnation plane, figure 11(e), the product of the
individual p.d.f.s of the scalar fluctuations and the scalar dissipation successfully
reproduces the bimodality of the scalar field but again tends to underestimate the
probability of occurrence of values of dissipation larger than the mean, i.e. for χ+

z >0.
The correlation coefficient and the comparison of the joint p.d.f.s with the product

of the individual p.d.f.s identifies the locations at which the statistical independence
hypothesis breaks down and illustrates some of the consequences of its use on the
prediction of flame extinction. This is useful information but is limited in that it does
not provide guidance for identification of the physical processes that give rise to the
correlation between the scalar fluctuations and their dissipation. The contribution
of each part of the scalar fluctuations and scalar dissipation space to their overall
correlation can be examined in terms of a weighting function integrand (Anselmet
et al. 1994), defined as

Wθ,χz = θ+χ+
z P (θ+, χ+

z ) (3.10)

so that the double integral of θ+χ+
z P (θ+, χ+

z ) over scalar fluctuation and dissipation
space is the correlation coefficient ρθ,χz . Figure 12 shows the weighting integrands,
θ+χ+

z P (θ+, χ+
z ), for the locations of figure 11 while the quantity θ+χ+

z P (θ+)P (χ+
z ) is

also plotted for comparison, so that when the two terms are identical the correlation
coefficient is zero, figure 12(a).

The correlation at the boundaries of the mixing layer, figure 12(b–d), is caused by
the large and positive scalar fluctuations, associated with the exponential tails of the
scalar p.d.f., figure 5, which give rise to values of instantaneous dissipation 10 to 15
times higher than the mean. Figure 12(e) corresponds to the stagnation plane where
the bimodal features of the scalar field are adequately described by the statistical
independence assumption, as discussed in connection with figure 11(e), but the largest
instantaneous dissipation values are related to small scalar fluctuation and not to the
positive fluctuations, as predicted by the weighting integrand θ+χ+

z P (θ+)P (χ+
z ). The

dependence of the values of the scalar dissipation on the scalar fluctuations provides
further evidence that the scalar field is ‘young’, in the sense that the cascade process
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Figure 11. Joint probability distributions of the scalar fluctuations and the axial component of
their dissipation. The graphs in the left-hand column present the joint p.d.f., P (θ+, χ+

z ), and the
graphs in the right-hand column show the product of the individual p.d.f.s, P (θ+)P (χ+

z ), at five axial
locations: (a) z? = −0.6, (b) z? = −0.46, (c) z? = −0.26, (d) z? = −0.13, (e) z? = 0. In all figures
contour lines are drawn, from inner to outer, at 0.35, 0.13, 0.05, 0.019, 0.007, 0.003.
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has no time to propagate down to the smallest scales due to the short residence times
in the mixing layer, so that the smallest turbulent scales depend on the large scales,
and this is further supported by the lack of local isotropy of the scalar dissipation in
the axial and radial direction along the centreline of the opposed jets.

3.3. Conditional distributions

Successful modelling of conditional scalar statistics, for example in the context of
combustion calculations, depends on knowledge of three parameters: the mean scalar
dissipation conditional on the stoichiometric mixture fraction, 〈χ|Θst〉, the weighted
probability, Eχ|Θst

, of occurrence of the mean conditional scalar dissipation and the
r.m.s. conditional dissipation, χ′|Θst, defined respectively as

〈χ|Θst〉 ≡
∫ ∞

0

χP (χ|Θst)dχ =
1

Nst

Nst∑
i=1

(χ|Θst)i, (3.11)

Eχ|Θ ≡ 〈χ|Θst〉P (Θ = Θst), (3.12)

χ′|Θst ≡
(∫ ∞

0

(χ− 〈χ|Θst〉)2P (χ|Θst)dχ

)1/2

=

(
1

Nst

Nst∑
i=1

(
χ|Θst − 〈χ|Θst〉

)2

i

)1/2

, (3.13)

where Nst is the number of scalar dissipation samples corresponding to the stoichio-
metric mixture fraction.

The distributions of the mean and r.m.s. of the conditional dissipation, equa-
tions (3.11) and (3.13), are related to the parameters µst and σst of the log-normal
distribution, equation (3.3), for the conditional scalar dissipation by

〈χ|Θst〉 = e(µst+σ/2), (3.14)

χ′|Θst =
(
〈χ|Θst〉2e(σ2

st−1)
)1/2

. (3.15)

The term Eχ|Θst
in equation (3.12), estimated via (3.11), represents the molecular

diffusion in scalar space in the transport equation for the scalar p.d.f. (Sahay & O’
Brien 1993), and is also proportional to the mean reaction rate (Bilger 1980).

Figure 13 presents the distributions of the mean and r.m.s. of the axial scalar
dissipation component conditional on the scalar fluctuations and of the weighted
probability Eχ|Θst

, equation (3.12), all normalized by the mean unconditional scalar
dissipation value 〈χz〉 so that if the scalar dissipation is independent of the scalar
fluctuations 〈χz|Θst〉/〈χz〉= 1 and Eχ|Θst

coincides with the scalar p.d.f., P (θ). All
conditional statistics have been calculated for the same mesh size and the same range
of scalar fluctuations and dissipation, equation (3.9), used in the evaluation of the
joint p.d.f.s. The statistical uncertainty, ΣN = ((χ′z|θ)2/Nst)

1/2, in the values of the
mean conditional scalar dissipation was estimated to be less than 5% (Girimmett
& Stirzaker 1992). Far from the mixing layer, at z? = −0.6, figure 13(a), where the
assumption of independence is valid, the distributions of mean and r.m.s. conditional
dissipation are indeed close to straight lines, parallel to the horizontal scalar fluctu-
ation axis, over large extents of centred scalar fluctuations θ+, and the normalized
probability is almost Gaussian. At the boundaries of the mixing layer, z? = −0.46 and
z? = −0.26, the largest values of mean conditional scalar dissipation, which can be
50 times the unconditional mean, correspond to the largest positive values of the
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mean conditional dissipation; 	, r.m.s. conditional dissipation; , weighted probability Eχ|θ .

scalar fluctuations and the distribution has the shape of a half-parabola, for θ > 0.
At z? = −0.13, however, the distribution changes to an inverted shape, which is
retained at the stagnation plane where the largest conditional dissipation corresponds
to small values of scalar fluctuations.

Comparison of figure 13 with the p.d.f.s of the scalar fluctuations, figure 5, shows
that the largest values of the mean conditional dissipation correspond always to the
rarest values of scalar fluctuations, which are located at the tail end of the p.d.f. at
the edges of the mixing layer, and between the two peaks of the bimodal distribution
at z? = 0. This pairing of the rare scalar fluctuations with the high values of mean
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conditional scalar dissipation can be also identified in other flow configurations, for
example in the grid turbulence of Jayesh & Warhaft (1992) in which the scalar p.d.f.
was ∩-shaped with high probability of zero scalar fluctuations and tails at positive
and negative values, and the distribution of the mean conditional dissipation had a
∪-shape with the largest mean dissipation, 〈χ|θ〉, at the rare large positive and negative
fluctuations. Anselmet et al. (1994) examined the scalar field in the mixing layer of
a jet and reported a skewed scalar p.d.f. with the high-probability region at negative
fluctuations and a low-probability exponential-like tail at positive fluctuations. The
resulting distribution for the mean conditional scalar dissipation, 〈χ|θ〉, included low
values at the most probable negative scalar fluctuations and the maximum value of
〈χ|θ〉 at the largest, rarest, positive values of scalar fluctuations. Thus, in all reported
flows where statistical independence was not satisfied, and this is likely to be true when
the scalar p.d.f. is not Gaussian, the distribution of the mean conditional dissipation is
directly related to, and can be qualitatively described by, the scalar p.d.f. which relates
low scalar probability to conditional dissipation values higher than the unconditional
mean and high probability to conditional values lower than the unconditional mean.
This implies that in combustion calculations, where a functional form of the scalar
p.d.f. is often assumed, a qualitative description of the mean conditional dissipation
can be obtained in terms of the inverse of the scalar p.d.f.

The r.m.s. of the conditional scalar dissipation, χ′z|θ, is almost equal to, and is
similarly distributed to, the mean conditional dissipation so that the maximum values
of χ′z|θ also correspond to the rarest scalar fluctuations. Although the absence of
published data of the r.m.s. conditional dissipation from other flow configurations
prevents comments on the generality of this result, the p.d.f. of the scalar dissipation,
where it has been measured (Sreenivasan et al. 1977; Namazian et al. 1988), was
always characterized by a high probability region at small values of dissipation
and long exponential tails and thus resembled an exponential distribution where,
by definition, the mean is equal to the r.m.s value. This result is important for
the modelling of the standard deviation of the cumulative distribution of the scalar
dissipation via the log-normality assumption, particularly since even the unconditional
r.m.s. scalar dissipation cannot be evaluated directly from a second-moment closure
or a transport p.d.f. equation.

The implications for combustion calculations and predictions of flame extinction
depend on the value of the stoichiometric mixture fraction and will be discussed in
terms of the scalar values Θst = 0.055 and 0.3 corresponding to methane and air and
CO/H2 and air diffusion flames, the latter of CO/H2 molar ratio of 0.6. Figures 14(a)
and 15(a) present the distributions of the mean, 〈χz|Θst〉, and r.m.s., χ′z|Θst, conditional
scalar dissipation normalized by their respective unconditional values, 〈χz〉 and χ′z ,
and plotted as a function of the mean scalar concentration, 〈Θ〉, along the centreline
between the two jets. Figures 14(b) and 15(b) show the distributions of the weighted
probability Eχ|Θst

, equation (3.13), and the scalar probability P (Θst), of occurrence of
the values of 0.055 and 0.3 respectively. It can be seen that the ratios 〈χz|Θst〉/〈χz〉 and
χ′z|Θst/χ

′
z decrease from the boundaries to the centre of the mixing layer for both

scalar values, Θst, and the mean and r.m.s. of the scalar dissipation conditional
on Θst = 0.055 are lower than the unconditional values while 〈χz|Θst〉/〈χz〉 and
χ′z|Θst/χ

′
z conditional on Θst = 0.3 are larger than unity within the mixing layer. At

the maximum values of the scalar probability, P (Θst), figures 14(b) and 15(b), which
correspond to the most probable locations for the stabilization of a turbulent diffusion
flame, the mean and r.m.s. of the conditional dissipation can differ by at least an order
of magnitude from the respective unconditional values. This implies that calculations
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Figure 15. As figure 14 but for Θst = 0.3.

of a methane flame, with the scalar fluctuations and the scalar dissipation assumed
statistically independent, would lead to an overestimation of the values of the scalar
dissipation at the stoichiometric contour and hence to underestimation of the flame
extinction limits, while it will be the opposite for a CO/H2 flame. This difference
between the conditional and the unconditional values is also likely to be valid in the
vicinity of the exit of a turbulent jet, which is the stabilization region of a diffusion
flame, since it was demonstrated above that the distributions of the mean and r.m.s.
conditional dissipation are directly related to, and may be qualitatively predicted by,
the shape of the scalar p.d.f. The p.d.f. in this flow is likely to be similar to that of
the counterflow mixing layer, which is skewed towards the two streams and bimodal
at the scalar interface for residence times smaller than the eddy turn-over and this
is supported by the measurements of Stapountzis et al. (1986) in a non-combusting
flow and by the theoretical approach of Bilger (1980) in a turbulent diffusion flame.

4. Conclusions
Simultaneous values of a passive scalar and of the axial and radial components

of the scalar dissipation have been measured for two Reynolds numbers by pairs of
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parallel cold wires along the centreline of a counterflow, where one jet was slightly
heated. The probability distribution of the scalar fluctuations was bimodal at the
stagnation plane, consistent with the fact that the scalar turbulence was ‘young’, in
the sense that the residence times in the mixing layer were short in comparison to the
eddy turn-over time, as is the case in the vicinity of the exit of a turbulent jet. Thus
the results presented here are likely to be representative of scalar turbulence when
mixing first takes place between two streams, for example in the stabilization region
of turbulent diffusion flames in practical combustors.

It was found that the scalar fluctuations and their dissipation were strongly corre-
lated within the mixing layer between the two opposing jets. At the boundaries of the
mixing layer, where the stoichiometric value of most fuels is located, the correlation
coefficient was approximately unity, resulting from the simultaneous occurrence of
the largest values of the dissipation and the largest values of the scalar fluctua-
tions. At the stagnation plane, the correlation coefficient was as high as −0.5 and
the largest values of the scalar dissipation were associated with small values of the
scalar fluctuations. Dependence of the distributions of the mean and r.m.s conditional
scalar dissipation on the shape of the scalar p.d.f. was demonstrated by relating the
largest dissipation values to the rarest scalar fluctuations and it was found that this
dependence was also valid in other flows where scalar dissipation has been measured.
The assumption of statistical independence between the scalar fluctuations and their
dissipation, commonly introduced in the modelling of turbulent diffusion flames, was
not tenable and the mean scalar dissipation conditional on the stoichiometric mixture
fraction was larger than the unconditional mean by up to an order of magnitude at
the boundaries of the mixing layer.

The probability distributions of the scalar dissipation components deviated from
log-normality at the low dissipation values and these departures were larger for the
conditional rather than the unconditional p.d.f.s. However, at the higher values of
dissipation, corresponding to cumulative probabilities larger than 50%, the p.d.f.s
of the conditional dissipation were to a good approximation log-normal so that the
adoption of log-normality for the distribution of the conditional scalar dissipation in
the context of combustion modelling leads to prediction of flame extinction limits to
within 15% provided that the mean and the r.m.s. of the scalar dissipation conditional
on the stoichiometric mixture fraction are accurately known.

The authors gratefully acknowledge the financial support provided by the European
Union through the HCM-Network contract no. CHRX-CT93-0389.

REFERENCES

Anselmet, F. & Antonia, R. A. 1985 Joint statistics between temperature and its dissipation. Phys.
Fluids 28, 1048.

Anselmet, F., Djeridi, H. & Fulachier, L. 1994 Joint statistics of a passive scalar and its dissipation
in a turbulent flow. J. Fluid Mech. 280, 173.

Antonia, R. A. & Browne, L. W. B. 1986 Anisotropy of the temperature dissipation on a turbulent
wake. J. Fluid Mech. 163, 393.

Antonia, R. A. & Mi, J. 1993 Temperature dissipation in a turbulent round jet. J. Fluid Mech. 250,
531.

Antonia, R. A. & Sreenivasan, K. R. 1977 Skewness of temperature derivatives in turbulent shear
flows. Phys. Fluids 20, 1986.

Antonia, R. A. & Van Atta, C. W. 1975 On the correlation between temperature and velocity
dissipation fields in a heated turbulent jet. J. Fluid Mech. 67, 273.



Conditional scalar dissipation statistics 23

Ashurst, W. T., Kerstein, A. R., Kerr, R. M. & Gibson, C. H. 1987 Alignment of vorticity and
scalar gradient with strain rate in simulated Navier–Stokes turbulence. Phys. Fluids 30, 2343.

Bilger, R. W. 1980 Turbulent flames with non-premixed reactants. In Turbulent Reacting Flows
(ed. P. A. Libby & F. A. Williams), p. 65. Springer.

Bilger, R. W. 1988 The structure of turbulent nonpremixed flames In Twenty-second Symposium
(Intl) on Combustion p. 475. The Combustion Institute, Pittsburgh.

Bray, K. N. C., Champion, M. & Libby, P. A. 1991 Premixed flames in stagnating turbulence:
Part I. The general formulation for counterflow streams and models for gradient transport.
Combust. Flame 84, 391.

Bray, K. N. C., Champion, M. & Libby, P. A. 1994 Flames in stagnating turbulence. In Turbulent
Reacting Flows (ed. P. A. Libby & F. A. Williams), p. 573. Academic.

Champion, M. & Libby, P. A. 1990 Stagnation streamline turbulence revisited. AIAA J. 28, 1525.

Cho, P., Law, C. K., Cheng, R. K. & Shepherd, I. G. 1988 Velocity and scalar fields of turbulent
premixed flames in a stagnation flow. In Twenty-second Symposium (Intl) on Combustion , p. 739.
The Combustion Institute, Pittsburgh.

Collis, D. C. & Williams, M. J. 1959 Two dimensional convection from heated wires at low
Reynolds number. J. Fluid Mech. 6, 357.

Eswaran, V. & Pope, S. B. 1988 Direct numerical simulations of the turbulent mixing of a passive
scalar. Phys. Fluids 31, 506.

Everest, D. A., Driscoll, J. F., Dahm, W. J. A. & Feikema, D. A. 1995 Images of two-dimensional
field and temperature gradients to quantify mixing rates within a non-premixed turbulent jet
flame. Combust. Flame 101, 58.

Gao, F. 1991 Mapping closure and non-Gaussianity of the scalar probability density functions in
isotropic turbulence. Phys. Fluids A 3, 2438.

Girimmett, G. R. & Stirzaker, D. R. 1992 Probability and Random Processes. Clarendon.

Haworth, D. C., Drake, M. C. & Blint, R. J. 1988 Stretched laminar flamelet modelling of a
turbulent jet diffusion flame. Combust. Sci. Tech. 60, 287.

Janicka, J. & Peters, N. 1982 Prediction of turbulent jet diffusion flame lift-off using a pdf transport
equation. In Nineteenth Symposium (Intl) on Combustion , p. 367. The Combustion Institute,
Pittsburgh.

Jayesh & Warhaft, Z. 1992 Probability distribution, conditional dissipation and transport of
passive temperature fluctuations in grid generated turbulence. Phys. Fluids A 4, 2292.

Kailasnath, P., Sreenivasan, K. R. & Saylor, J. R. 1993 Conditional scalar dissipation rates in
turbulent wakes, jets and boundary layers. Phys. Fluids A 5, 3207.

Kerstein, A. R. & Ashurst, W. T. 1984 Log-normality of gradients of diffusive scalars in homo-
geneous, two-dimensional mixing systems. Phys. Fluids 27, 2819.

Kolmogorov, A. N. 1962 A refinement of previous hypothesis concerning the local structure of
turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech. 13, 82.

Kostiuk, L. W. 1991 Premixed turbulent combustion in counterflowing streams. PhD thesis, Uni-
versity of Cambridge.

Kostiuk, L. W., Bray, K. N. C. & Cheng, P. K. 1989 Premixed turbulent combustion in counter-
flowing streams. Combust. Sci. Tech. 64, 233.

Krishnamoorthy, L. V. & Antonia, R. A. 1987 Temperature-dissipation measurements in a
turbulent boundary layer. J. Fluid Mech. 176, 265.

Lee, Y. Y. & Pope, S. B. 1995 Nonpremixed turbulent reacting flow near extinction. Combust. Flame
101, 501.

Liew, S. K., Bray, K. N. C. & Moss, J. B. 1984 A stretched laminar flamelet model of turbulent
non-premixed combustion. Combust. Flame 56, 199.

Mastorakos, E., Taylor, A. M. K. P. & Whitelaw, J. H. 1992 Extinction and temperature
characteristics of turbulent counterflow flames with partial premixing. Combust. Flame 91, 40.

Mastorakos, E., Taylor, A. M. K. P. & Whitelaw, J. H. 1993 Mixing in turbulent opposed jet
flows. In Turbulent Shear Flows 9 (ed. L. J. S. Bradberry, F. Durst, B. E. Launder, F. W.
Schmidt & J. H. Whitelaw), p. 147. Springer.

Mi, J., Antonia, R. A. & Anselmet, F. 1995 Joint statistics between temperature and its dissipation
rate components in a round jet. Phys. Fluids A 7, 1665.

Namazian, M., Scheffer, R. W. & Kelly, J. 1988 Scalar dissipation measurements in the developing
region of a jet. Combust. Flame 74, 147.



24 K. Sardi, A. M. K. P. Taylor and J. H. Whitelaw

Parathoen, P., Petit, C. & Lecordier, J. C. 1982 The effect of thermal prong- wire interaction on
the response of a cold wire in gaseous flows (air, argon and helium). J. Fluid Mech. 124, 457.

Peters, N. 1983 Local turbulent quenching due to flame stretch and non-premixed turbulent
combustion. Combust. Sci. Tech. 30, 1.

Peters, N. 1984 Laminar diffusion flamelet models in non-premixed turbulent combustion. Prog.
Energy Combust. Sci. 10, 319.

Prasad, R. R. & Sreenivasan, K. R. 1990 Quantitative three-dimensional imaging ang the structure
of passive scalar fields in fully turbulent flows J. Fluid Mech. 216, 1.

Sahay, A. & O’Brien, E. E. 1993 Uniform mean scalar gradient in grid turbulence: Conditioned
dissipation and production. Phys. Fluids A 5, 1076.

Sardi, K. 1997 Turbulent flame extinction in unforced and periodically forced counterflow. PhD
thesis, University of London.

Sardi, K., Taylor, A. M. K. P. & Whitelaw, J. H. 1996 Experimental investigation of the
interaction between scalar dissipation and strain rate in a counterflow geometry. In The
Proceedings Volume of the IUTAM Symposium on Variable Density Low Speed Flows (ed. L.
Fulachier, J. L. Lumley & F. Anselmet). Kluwer.

Sreenivasan, K. R., Antonia, R. A. & Dahn, H. Q. 1977 Temperature dissipation fluctuations in
a turbulent boundary layer. Phys. Fluids 20, 1238.

Sreenivasan, K. R. & Tavoularis, S. 1980 On the skewness of the temperature derivative in
turbulent flows. J. Fluid Mech. 101, 783.

Stapountzis, H., Sawford, B. L., Hunt, J. C. R. & Britter, R. E. 1986 Structure of the temperature
field downwind of a line source in grid turbulence. J. Fluid Mech. 165, 401.

Starner, S. H., Bilger, R. W., Lyons, K. M., Frank, J. H. & Long, M. B. 1994 Conserved
scalar measurements in turbulent diffusion flames by a Raman and Rayleigh Ribbon Imaging
method. Combust. Flame 99, 347.

Tavoularis, S. & Corrsin, S. 1981 Experiments in nearly homogeneous turbulent shear flow with
a uniform mean temperature gradient. Part 2. The fine structure. J. Fluid Mech. 104, 349.

Tennekes, H. & Lumley, J. L. 1972 First Course in Turbulence. MIT Press.

Tsuji, T., Nagano, Y. & Tagawa, M. 1992 Frequency response and instantaneous temperature
profile of cold-wire sensors for fluid temperature fluctuation measurements. Exps. Fluids 13,
171.

Wyngaard, J. C. 1971a Spatial resolution of a resistance wire temperature sensor. Phys. Fluids 4,
2052.

Wyngaard, J. C. 1971b The effect of velocity sensitivity on temperature derivative statistics in
isotropic turbulence. J. Fluid Mech. 48, 763.


